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Biologists are increasingly confronted with the challenge of quickly understanding genome-wide biolog-
ical data, which usually involve a large number of genomic coordinates (e.g. genes) but a much smaller
number of samples. To meet the need for data of this shape, we present an open-source package called
‘supraHex’ for training, analysing and visualising omics data. This package devises a supra-hexagonal
map to self-organise the input data, offers scalable functionalities for post-analysing the map, and more
importantly, allows for overlaying additional data for multilayer omics data comparisons. Via applying to
DNA replication timing data of mouse embryogenesis, we demonstrate that supraHex is capable of simul-
taneously carrying out gene clustering and sample correlation, providing intuitive visualisation at each
step of the analysis. By overlaying CpG and expression data onto the trained replication-timing map,
we also show that supraHex is able to intuitively capture an inherent relationship between late replica-
tion, low CpG density promoters and low expression levels. As part of the Bioconductor project, supraHex
makes accessible to a wide community in a simple way, what would otherwise be a complex framework
for the ultrafast understanding of any tabular omics data, both scientifically and artistically. This package
can run on Windows, Mac and Linux, and is freely available together with many tutorials on featuring real
examples at http://supfam.org/supraHex.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
1. Introduction tion onto a 2-dimensional (2D) space. A self-organising learning
Conventional microarray platforms [1,2] and recent next-gener-
ation sequencing technologies [3,4] are producing ever-increasing
amounts of omics data. The forms of raw data may differ in the
preprocessing as required, but the downstream (analysable) data
can universally be stored in a table-like matrix, which digitises
expression levels or other bioactivities of genomic coordinates
(e.g. genes for simplicity) across the samples. This tabular matrix
of genes � samples usually contains a large number of genes (i.e.
large p features) but a much smaller number of samples (i.e. small
n samples). This ‘large p, small n’ data analysis challenge [5] is a
common barrier to biologists in checking and exploring their
own omics data. Sanity checking and an initial quick exploration
are essential first steps on the route to an eventual downstream
discovery and final interpretation. A long list of genes requires that
dimension of the information to be compressed, e.g. via clustering.
The clustering of genes still needs to be visualised, done by projec-
algorithm [6] is well-suited for this purpose as it imposes an or-
derly structure on the clusters.

Commonly the structure imposed for visualising a 2-D map is a
square grid, but a giant hexagon formed by smaller hexagons is
prevalent in many natural and man-made objects, such as a honey-
comb or at Giant’s Causeway. Inspired by this, we devised a supra-
hexagonal map that seamlessly consists of smaller hexagons. It has
symmetric beauty around the center, from which individual hexa-
gons radiate outwards (Fig. 1A); this makes the supra-hexagonal
map suitable for modelling symmetric data, particularly omics
data. Omics data reveal biological information on a global scale,
and the rationale behind data normalisation [7] is that most genes
do not change or do so randomly. In other words, most genes will
map to the centre with radial symmetry, giving a visual normalisa-
tion against which non-random changes stand out. To make use of
this symmetry of the gene-sample matrix in high-dimensional in-
put space, we use a self-organising learning algorithm but based on
the supra-hexagonal layout. This is one of the key functionalities of
the package ‘supraHex’. This package produces a map in which: (i)
genes with similar data patterns self-organise to the same or near-
by nodes in the map, and (ii) the distribution of genes across the 2D
map is representative of the high-dimensional input space. Also,
supraHex can be applied to multilayer omics datasets (such as in
Fig. 1B). In this paper we demonstrate that supraHex makes it easy
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Fig. 1. The key functionalities in supraHex. (A) Architectural design of a supra-hexagonal map with node numbering. It has a total of 169 smaller hexagons (i.e. map nodes)
that are indexed as follows: start from the center, and then expand circularly outwards, and for each circle increase in an anti-clockwise order. The radius or the x- or y-
dimension of the map grid uniquely determines this architecture. (B) Illustration of datasets used to demonstrate the functionalities of supraHex. DNA replication timing data
matrix during mouse embryogenesis is used as input data for training the supra-hexagonal map. CpG data and expression data matrices are used for overlaying onto the
trained replication-timing map. CpG data contains information on gene promoter CpG classification: HCP stands for the vector with 1 for a high CpG density promoter and 0
otherwise; LCP for the vector with 1 for a low CpG density promoter and 0 otherwise. Unlike the logical values in CpG data, expression data contains numeric expression
levels for genes. (C) Schematic flowchart of the supraHex workflow. After being installed and loaded, the package takes as input any tabular data matrix and outputs the
trained supra-hexagonal map and its associated codebook matrix. The trained map can be post-processed for multiple purposes, including: (III) visualisation of various
properties associated with the map, (IV) map partitioning for obtaining gene meta-clusters, (V) sample-specific component reordering for sample correlation, and (VI) if
provided, additional data can also be overlaid onto the trained map for exploring relationships between input and additional data.
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to carry out integrated tasks such as: gene clustering/meta-cluster-
ing, sample correlations and visualisations, and the overlaying
of additional data onto the map (Fig. 1C). As an open-source R
package, supraHex is distributed as part of the Bioconductor
project [8].

2. Materials and methods

2.1. The supra-hexagonal map trained via a self-organising learning
algorithm

The package ‘supraHex’ is a pure R implementation of a self-
organising learning algorithm [6] applied to the symmetric topol-
ogy of the supra-hexagonal map. For details on the algorithm as
well as the topology and training tailored to this architectural de-
sign, the reader is referred to the Reference Manual (Supplemen-
tary material 1). The package takes as input a matrix of values
for genes versus samples, and sets up the pipeline for the learning
process: initialisation, training and many auxiliary functions. The
output of the learning is the mapping of similar input data onto
neighboring regions of the supra-hexagonal map. Each map node
is associated with two coordinates: one in 2D output space (i.e.
what we can see), and the other in high-dimensional input space
(i.e. what we can imagine; represented as prototype vectors with
the same dimension as the input data vectors). Prototype vectors
in the map nodes collectively constitute a so-called codebook ma-
trix. So in essence, supraHex converts the gene-sample matrix into
the codebook matrix that is associated with the supra-hexagonal
map.
2.2. Visualisations at and across nodes of the map

supraHex provides several options for visualising the map gen-
erated from the training process. These visualisations fall into two
general categories: across nodes and within nodes. The first is to
visualise the single-value properties associated with each map
node; each node (hexagon) is numbered (as shown and explained
in Fig. 1A) so that it can easily be referred to. The map distance tells
how far each map node is away from its neighbors in high-dimen-
sional input space, while the ‘hit’ histogram over the map shows
how many input data vectors are best hitting each node. The sec-
ond type of visualisation is for illustrating the patterns (in the pro-
totype vectors) associated with each map node, such as those
stored in the codebook matrix. The patterns can be visualised by
line plots and bar plots. When a pattern spans both negative and
positive values, the zero axis is also displayed. The Reference Man-
ual contains advanced-usage instructions for customising the plot-
ting of patterns.

2.3. Partitioning of the map into gene meta-clusters

As well as clustering genes into each node (hexagon), supraHex
is also able to perform a partitioning operation on the trained map
to obtain gene meta-clusters covering regions of the map. The idea
is to first identify local minima of distances between map nodes,
and treat these as seeds to group the remaining nodes into meta-
clusters that cover the whole map. Starting from the seeds, each
remaining node can either simply be grouped with the best-match-
ing seed, or the partitioning can be done using the region-growing
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algorithm proposed in [9]. The purpose of the region-growing algo-
rithm is to ensure that each meta-cluster is continuous over the
map. For visualising meta-clusters, the map is colour-coded by re-
gion with the seeds highlighted as well.

2.4. Sample correlation

The concept of using supraHex for visualising sample correla-
tion is to lay out the samples on a new 2D square lattice (as in
the examples shown in Figs. 2 and 3B). This can be done based
on either the sample-wise vectors of the codebook/input matrix,
or on the covariance matrix thereof. supraHex provides a choice
for calculation of the covariance matrix based on a variety of differ-
ent distance metrics. These include: some commonly used metrics
(e.g. Pearson correlation, Euclidean and cityblock distance, and co-
sine similarity); some rank-based correlations (i.e. Spearman rho
and Kendall tau); and mutual information as a general measure
of dependency. Using the covariance matrix can vastly reduce
the cost of training the layout, which is essential when the input
data matrix is prohibitively large. Samples are organised such that
those with similar profiles are closer to each other within this lay-
out (called the ‘sample landscape’). Within this landscape, the geo-
metric locations of samples delineate their relationships.

2.5. Overlaying additional data onto the trained map for exploring
relationships between input and additional data

The overlaying of additional data enables comparisons of multi-
layer omics data. In the example shown in Fig. 1B, the input data
used for training are DNA replication timing, and the two addi-
tional sources to be overlaid are CpG data and expression data.
The overlaying onto each map node is realised by: first calculating
Fig. 2. The replication timing map of 22 cell types from mouse embryogenesis. After th
associated with the trained map is used for sample-specific component reordering and
colour bar represents replication-timing ratios [=log2(Early/Late)], with orange for early
similar replication-timing patterns are mapped onto the same position in the map. T
analysed, from which geometric locations of components/samples delineate relations
(embryonic stem cells) and iPSCs (induced pluripotent stem cells), (ii) early epiblast, (iii)
(v) partially-reprogrammed iPSCs (piPSCs) and (vi) differentiated myoblasts. (For interpr
web version of this article.)
the neighborhood-kernel-weighted hits/counts of the input data,
then calculating the accumulated values (similarly weighted by
the neighborhood kernel) of the additional data to be mapped onto
that node, and finally obtaining the overlaid values via normalisa-
tion of the accumulated values by hits. The reason for weighting by
the neighborhood kernel is to avoid rigid overlaying which could
result from focusing on the best-matching map nodes only; there
may exist several closest best-matching nodes for an input data
vector.

2.6. Public accessibility of the package and tutorial-like applications on
real cases

The package ‘supraHex’ is regularly maintained and freely avail-
able via the Bioconductor website (http://bioconductor.org). Along
with the package, there are a detailed description of the package
functions in the Reference Manual (Supplementary material 1)
and a task-oriented description of the package functionalities in
the User Manual (see Supplementary material 2). In addition to
this, a dedicated webpage (http://supfam.org/supraHex) provides
applications to many real cases including the example presented
in the following Results section. On the website the reader can find
the workflow of R commands used in each case (and the corre-
sponding results/visuals). The users are encouraged to reproduce
and adapt these workflows for analysing their own omics datasets.

3. Results

To showcase the multifaceted functionalities supported by
supraHex (Fig. 1), we used published multilayer omics datasets
on DNA replication timing, promoter CpG classification and gene
expression [10,11]. These datasets consist of digitised replication
e supra-hexagonal map is trained on replication timing data, the codebook matrix
visualisation. Each map illustrates a sample-specific replication-timing profile. The

replication and blue for late replication. Across components/samples, genes with
he outermost frame represents the replication-timing landscape for the samples
hips between these 22 cell types. They are: (i) pluripotent cells, including ESCs
late epiblast, (iv) three germ layers, including ectoderm, mesoderm and endoderm,

etation of the references to colour in this figure legend, the reader is referred to the
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Fig. 3. Using the replication-timing map to intuitively explore relationships
between replication timing, CpG and expression. (A) CpG data overlaid onto the
replication-timing map. Left: the HCP vector with 1 for high CpG density promoters
and 0 otherwise; Right: the LCP vector with 1 for low CpG density promoters and 0
otherwise. The colour bar indicates the probability of containing genes with HCPs
(left panel) or LCPs (right panel); the stronger, the higher. (A) Expression data
overlaid onto the replication-timing map. After the replication-timing map is
overlaid with expression data, the codebook matrix associated with the overlaid
expression map is used for sample-specific component reordering and visualisation.
Each map illustrates a sample-specific expression profile. The colour bar stands for
expression levels [=log2(Intensity)], with dark red for high expression and dark
green for low expression. It should be noted that here genes with similar
replication-timing patterns are still mapped onto the same position on the map,
but the illustrations are replaced with expression patterns. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Comparison to other tools implementing self-organising learning algorithms.

Features supraHex somtoolbox Kohonen Cluster3.0

Programming language R Matlaba R C
Map shape supra-

hexagon
Sheetb Sheet Sheet

Visually friendly Yes Yes Yes No
With neighbour kernels Yes Yes No No
Meta-clustering Yes Yes No No
Sample reordering Yes Yes No No
Overlaying with

additional data
Yes No No No

Bioconductor project Yes No No No

a Needs commercial license.
b Also supports the cylinder and toroid shapes but are less popular.
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timing, promoter CpG status and expression levels of 17,292 genes
in a variety of samples. We first chose the DNA replication timing
data matrix as the input for training a supra-hexagonal map. As a
result of step (V) in Fig. 1C, the reordering and visualisation of sam-
ple-specific components of the map are able to reveal intuitive
information about both genes and samples (see Fig. 2). Comparing
the supraHex output to the heatmap display shown in the original
publication [11], it can be seen that several features associated
with input replication-timing can be revealed more intuitively in
the output from the supraHex analysis. Firstly, genes with early
replication timing outnumber those with late replication timing,
irrespective of the cell type analysed. Secondly, early-replicated
genes are mostly mapped onto the top part of the map, while the
late-replicated genes are consistently clustered in the bottom-left
corner of the map. Thirdly, cell types of the same category share
similar replication-timing profiles/signatures, and are thus placed
together at a specific location of this 2D landscape (framed by
the outermost black lines). Simultaneous inspection of the genes
within the supra-hexagonal map and the samples within the land-
scape reveals: (i) what constitutes the replication-timing signature
common to a category of cell types (such as pluripotent cells), and
(ii) how signatures change across these different cell type
categories.

Next, we overlaid CpG data onto the trained replication-timing
map. CpG data are vectors containing logical information (Fig. 1B).
The HCP vector indicates whether or not a gene contains a high
CpG density promoter (HCP), while the LCP vector suggests the
presence of a low CpG density promoter (LCP). The left panel in
Fig. 3A is the result after overlaying the HCP vector onto the repli-
cation-timing map, showing the probability that nodes (and genes
thereof) will have an HCP. In Fig. 2 it is evident that consistently
late replications (in the bottom-left corner) are mostly devoid of
HCP. In contrast, when overlaying the LCP vector, we see that con-
sistently late replications are highly indicative of the presence of
LCPs (the right panel in Fig. 3A).

A more general kind of data for overlaying are the expression
data in Fig. 1B. In this context, the replication-timing map overlaid
with the expression data produces an expression map. This expres-
sion map is also artificially associated with codebook matrix but it
has the dimension of the overlaid (expression) data rather than the
input (replication timing) data. As before, this artificial codebook
matrix can be used for sample-specific component reordering
and visualisation (see Fig. 3B). Remarkably, purely based on the
overlaid expression map, two features become clear. Firstly, we
can see that consistently late replications (in the bottom-left cor-
ner) consistently have low expression across samples. Secondly,
the reordering of sample-specific components recovers some
known relationships, such as the sequence of neural differentiation
of the embryonic stem cell line D3 (the path from ESC_D3 via
EBM3_D3 and EBM6_D3 to EBM9_D3). Taking into account the fact
that the additional data were not used in the training of the map,
the information revealed in Fig. 3 is truly reflective of the inherent
relationships between late replication, low CpG density promoters
and low expression levels.

4. Discussion

The open-source package ‘supraHex’, our contribution to the
Bioconductor project, is intended to meet the challenging demand
for a way to intuitively and quickly understanding omics data. The
concept of self-organising omics data is not new [12] but nonethe-
less fascinating that even today it remains a powerful technique
[13,14]. However, previous tools (such as somtoolbox [15], Koho-
nen [16] and Cluster3.0 [17]) compromise on availability, visual
novelty, or functional scalability (see Table 1 for a comparison). In-
stead, supraHex is tailored to the new challenges of omics data
analysis. It is easy to use, visually friendly at all steps of the anal-
ysis, and most importantly, provides self-explanatory and repro-
ducible results. As demonstrated here, the map produced by
supraHex can be used to analyse both genes and samples at the
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same time, and can also be overlaid with additional data for mul-
tilayer omics data comparisons. Being an R/Bioconductor package,
we anticipate that supraHex will deliver to a very broad bioinfor-
matics community an intuitive and ultrafast understanding of
any tabular omics data, both scientifically and aesthetically.
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